Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - General Subjects
Article . 1981 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biochemical changes in intervertebral disc degeneration

Authors: S.M. Eisenstein; M.B.E. Sweet; Gillian Lyons;

Biochemical changes in intervertebral disc degeneration

Abstract

The distribution of the principal matrix components, collagen, proteoglycans and water, across the diameter of human normal and degenerate intervertebral discs was compared. Little difference in collagen distribution was noted between normal and degenerate tissue but water and proteoglycan content decreased with degeneration, particularly in the centre of the disc. Proteoglycans of the nucleus pulposus and annulus fibrosus of normal and degenerate intervertebral discs were examined. In comparison with monomers of normal tissues, degenerate disc proteoglycans were of larger average hydrodynamic size and had a higher glucosamine to galactosamine ratio. Proteoglycans were digested with chondroitinase ABC and passed over an HS-Sepharose 2B affinity column. A greater proportion of the keratan sulphate-protein cores from degenerate disc were capable of interaction with the immobilized hyaluronate. Loss of aggregating ability was associated with diminution in size of the core. It is suggested that a large proportion of proteoglycans from normal disc have undergone a degree of degradation in the hyaluronate binding region and that proteoglycan synthesis in this tissue is slower than in degenerate tissue.

Related Organizations
Keywords

Adult, Glucosamine, Galactosamine, Middle Aged, Body Water, Keratan Sulfate, Reference Values, Humans, Proteoglycans, Collagen, Intervertebral Disc, Intervertebral Disc Displacement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    292
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
292
Top 1%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!