Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - General Subjects
Article . 1977 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prostaglandin metabolism during circulatory shock

Authors: John T. Flynn; Allan M. Lefer;

Prostaglandin metabolism during circulatory shock

Abstract

Abstract The rates of metabolic degradation and the patterns of metabolite formation of tritium-labeled prostaglandins E2 and F2α were assessed in vitro in tissues obtained from normal rabbits and from rabbits subjected to hemorrhagic or endotoxic shock. Normal rabbit tissues metabolized prostaglandin E2 at the following rates: renal cortex 479 ± 34, liver 389 ± 95, and lung 881 ± 93 pmol of PGE2 metabolized/mg soluble protein per min at 37°C (mean ± S.E.). Prostaglandin F2α metabolism proceeded in normal animal tissues at rates of 477 ± 39, 324 ± 95, and 633 ± 69 pmol of PGF2α metabolized/mg soluble protein per min for renal cortex, liver and lung, respectively. There were no significant differences between these rates of PGE2 and PGF2α metabolism when compared to rates in tissues obtained from animals subjected to either hemorrhagic or endotoxic shock. In addition, no significant differences were observed between the rate of PGE2 metabolism and that of PGF2α metabolism for any tissue. However, the lung was able to metabolize PGE2 and PGF2α significantly more rapidly than the liver, and to degrade PGE2 at a significantly greater rate than the renal cortex. Although slightly different patterns of metabolite production were observed between lung and kidney homogenates, only the liver metabolized prostaglandins almost exclusively to more polar metabolites. While hemorrhagic or endotoxic shock induced slight changes in the patterns of PGE2 metabolite formation in all three tissues studied, PGF2α metabolite formation patterns were not significantly altered by circulatory shock. Thus, prostaglandin metabolism is not significantly impaired during the first 2 h of hemorrhagic or endotoxic shock in rabbit tissues. Therefore, impairment of prostaglandin metabolism is not the major factor responsible for the early increase in circulating prostaglandin concentrations in these forms of shock.

Related Organizations
Keywords

Kidney Cortex, Prostaglandins E, Prostaglandins F, Shock, Hemorrhagic, Shock, Septic, Kinetics, Liver, Organ Specificity, Animals, Rabbits, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!