
pmid: 3422164
(1) Cyanamide (N identical to C-NH2) has been shown to be a substrate for purified Mo-nitrogenases of Klebsiella pneumoniae and Azotobacter chroococcum, with apparent Km values near 0.8 mM. (2) Reduction products were CH4, CH3NH2 and NH3 formed by pathways requiring 6 or 8 electrons: N identical to CNH2 + 6e + 6H+----CH3NH2 + NH3; N identical to CNH2 + 8e + 8H+----CH4 + 2NH3 (3) Acetylene reduction and hydrogen evolution were inhibited more than 75% by cyanamide (10 mM). Cyanamide also inhibited total electron flux at nitrogenase protein component ratios (Fe/MoFe) near 10. (4) Cyanamide was also a substrate for the recently isolated Va-nitrogenase of A. chroococcum, but with an apparent Km of 2.6 mM showed weaker binding and an 8-fold lower Vmax than did either Mo-nitrogenase. (5) The component ratios of nitrogenase proteins favouring CH4 formation was 3.5 Fe/MoFe protein and 1 Fe/VaFe protein.
Molybdenum, Cyanides, Acetylene, Vanadium, Substrate Specificity, Kinetics, Methylamines, Ammonia, Cyanamide, Nitrogenase, Methane, Oxidation-Reduction, Hydrogen
Molybdenum, Cyanides, Acetylene, Vanadium, Substrate Specificity, Kinetics, Methylamines, Ammonia, Cyanamide, Nitrogenase, Methane, Oxidation-Reduction, Hydrogen
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
