
pmid: 7688162
Acetylcholine may set the dynamics of cortical networks to those appropriate for learning of new information, while decreased cholinergic modulation may set the appropriate dynamics for recall. In slice preparations of the olfactory cortex, acetylcholine selectively suppresses intrinsic but not afferent fiber synaptic transmission, while decreasing the adaptation of pyramidal cells. In biologically realistic models of this region, the selective suppression of synaptic transmission prevents recall of previously learned memories from interfering with the learning of new memories, while the decrease in adaptation enhances the response to afferent input and the modification of synapses. This theoretical framework may serve to guide future studies linking neuromodulators to cortical memory function.
Cerebral Cortex, Memory, Animals, Humans, Synaptic Transmission, Acetylcholine
Cerebral Cortex, Memory, Animals, Humans, Synaptic Transmission, Acetylcholine
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 371 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
