<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract The same receptors for excitatory amino acids (EAA) that mediate direct neuronal depolarization can also be responsible for neuronal injury. Prolonged stimulation of EAA receptors of either the N-methyl-d-aspartate (NMDA) or non-NMDA types eventually results in the death of most central neurons. The exact mechanism(s) of cell injury is complicated, since depolarization and neuronal swelling, calcium influx, and possibly second messengers all contribute. Evidence is accumulating that the brain damage associated with anoxia, stroke, hypoglycemia, epilepsy, and perhaps neurodegenerative illnesses such as Huntington's disease may be at least partially produced by excessive activation of NMDA receptors. To the extent that the pathophysiology can be explained by this mechanism, it may be amenable to rational therapies now under development.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |