Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience & Biobe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience & Biobehavioral Reviews
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gammahydroxybutyrate: An overview of the pros and cons for it being a neurotransmitter and/or a useful therapeutic agent

Authors: Christopher D. Cash;

Gammahydroxybutyrate: An overview of the pros and cons for it being a neurotransmitter and/or a useful therapeutic agent

Abstract

Gamma-hydroxybutyrate (GHB) is a catabolite in brain of gamma-aminobutyrate (GABA) and is also found in nonneuronal tissues. It is present in the brain at about one thousandth of the concentration of its parent compound. High affinity and specific uptake, and energy dependent transport systems for GHB have been described in brain in addition to a class of high affinity binding sites, functional at a rather unphysiologically low pH. Administration of large doses of GHB to animals and man leads to sedation, and at the highest doses, anaesthesia. These effects are prominent when GHB brain levels are over one hundred-fold the endogenous levels. In some animals, GHB administration also induces an electroencephalographic and behavioural changes resembling that of human petit mal epilepsy. GHB has been used in man as an anaesthetic adjuvant. GHB lowers cerebral energy requirements and may play a neuroprotective role. Administered GHB profoundly effects the cerebral dopaminergic system by a mechanism which remains to be unravelled. GHB has been tested with success on alcoholic patients where it attenuates the withdrawal syndrome. It is indicated here that in this situation, it may owe its effect by acting as a pro-drug of the neurotransmitter GABA into which it can be transformed. As administration of GHB, a GABAB receptor agonist and a natural opioid peptide all elicit similar abnormal EEG phenomena, it may be suggested that they are acting via a common pathway. The petit mal epileptic effects of GHB might be ascribed to its direct, or indirect agonist properties after transformation to a pool of GABA at the GABAB receptor or via interactions at its own binding sites linked to a similar series of biochemical events. Some anticonvulsant drugs, the opiate antagonist naloxone and a synthetic structural GHB analogue antagonise certain behavioural effects of GHB administration. It is postulated that GHB exerts some of its effects via transformation to GABA pools, and that substances which inhibit this process antagonise its effects by blocking GABA formation. GHB has been proposed as a neurotransmitter, although straightforward evidence for this role is lacking. Evidence for and against GHB, as a neurotransmitter, is reviewed here together with a discussion of its potential as a therapeutically useful drug.

Keywords

Brain Chemistry, Neurotransmitter Agents, Animals, Humans, Sodium Oxybate, Anesthetics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!