Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomaterialsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomaterials
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Biomaterials
Article . 1996
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mineral evolution of bone

Authors: Antonio Ravaglioli; B. Bacchini; L. Piombi; Adriano Krajewski; Andreana Piancastelli; Giancarlo Celotti; G. Zama; +1 Authors

Mineral evolution of bone

Abstract

A study on the evolution with age of the mineral composition of bones was performed on samples belonging to human and other common mammalian species (cattle, sheep, dog). The study was carried out on the ashes obtained by calcination of the bone samples (1 h at 900 degrees C). The calcined powders were carefully examined by X-ray diffraction, from which precise quantitative evaluation (also confirmed by chemical analysis) of the crystalline phases present was derived. These data were analysed as a function of the introduced fractional age phi, a new relative scale that allows even largely different lifespan species to be compared. An overall linear increase in (Ca + Mg)/P ratio with log phi was found and the other considerations on molecular constitution (especially as regards Mg2+ substituting for Ca2+ in very young subjects) of the various phases detected were formulated and relative implications evaluated. The results appear promising for an improvement of knowledge in the field of biomedical experimentation and clinical implantology.

Keywords

Aging, Sheep, Absorptiometry, Photon, Calcification, Physiologic, Dogs, Species Specificity, Bone Density, Animals, Humans, Calcium, Cattle, Magnesium, Femur

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?