
pmid: 8621030
The principles of linear elastic fracture mechanics (LEFM) were developed in the 1950s by George Irwin (1957). This work was based on previous investigations of Griffith (1920) and Orowan (1944). Irwin (1957) demonstrated that a crack shape in a particular location with respect to the loading geometry had a stress intensity associated with it. He also demonstrated the equivalence between the stress intensity concept and the familiar Griffith criterion of failure. More importantly, he described the systematic and controlled evaluation of the toughness of a material. Toughness is defined as the resistance of a material to rapid crack propagation and can be characterized by one parameter, Kic. In contrast, the strength of a material is dependent on the size of the initiating crack present in that particular sample or component. The fracture toughness of a material is generally independent of the size of the initiating crack. The strength of any product is limited by the size of the cracks or defects during processing, production and handling. Thus, the application of fracture mechanics principles to dental biomaterials is invaluable in new material development, production control and failure analysis. This paper describes the most useful equations of fracture mechanics to be used in the failure analysis of dental biomaterials.
Dental Stress Analysis, Ceramics, Models, Theoretical, Dental Porcelain, Survival Analysis, Elasticity, Dental Materials, Materials Testing, Glass, Stress, Mechanical, Pliability, Probability
Dental Stress Analysis, Ceramics, Models, Theoretical, Dental Porcelain, Survival Analysis, Elasticity, Dental Materials, Materials Testing, Glass, Stress, Mechanical, Pliability, Probability
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
