
AbstractCall a vertex of a vertex-colored simple graph isolated if all its neighbors have colors other than its own. A. J. Goldman has asked: When is it possible to color b vertices of a graph black and the remaining w vertices white so that no vertex is isolated? We prove (1) if G is connected and has minimum degree 2, it is always possible unless b or w is 1; (2) if G is 2-connected, then for any pair (b, w) there is a coloring in which both monochromatic subgraphs are connected; (3) if G has vertices of degree 1, a necessary condition for a (b, w) coloring without isolates to exist is that there be a solution to a certain knapsack inequality. Next, statements generalizing (1) and (2) to n colors are presented, and current knowledge about their truth is discussed. Then various refinements of (1) and (3), more complicated to state and prove, are given. For instance, with the hypotheses of (1) at least one of the monochromatic subgraphs may be chosen to be connected. Also, the necessary knapsack inequality of (3) is, in most cases, sufficient. Throughout, some consideration is given to the algorithmic complexity of coloring (if possible) without isolates. For most graphs which might arise in practice there is an efficient algorithm for the 2-color problem. However, for arbitrary graphs the 2-(or more) color problem is NP-complete.
Coloring of graphs and hypergraphs, Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, vertex colorings, Theoretical Computer Science
Coloring of graphs and hypergraphs, Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, vertex colorings, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
