
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 7813018
Kinetoplast DNA (kDNA) of trypanosomatid parasites is a network of approximately 5000 catenated DNA minicircles and approximately 25 maxicircles. We developed the following strategy to deduce the topological linkage of the minicircles of the Crithidia fasciculata network. First, we used graph theory to provide precise models of possible network structures. Second, on the basis of these models, we predicted the frequencies of minicircle oligomers expected from random network breakage. Third, we determined the fragmentation pattern of kDNA networks as a function of the extent of digestion. Fourth, by comparison of the results with the predictions, we identified the model that best represents the network. We conclude that each minicircle is linked on average to three other minicircles. A honeycomb arrangement probably results, with each minicircle typically at the vertex of a hexagonal cell. This topology has implications for the assembly, structure, and function of kDNA networks.
Electrophoresis, Agar Gel, Models, Molecular, Microscopy, Electron, Biochemistry, Genetics and Molecular Biology(all), Macromolecular Substances, DNA, Kinetoplast, Animals, Nucleic Acid Conformation, Crithidia fasciculata, Deoxyribonucleases, Type II Site-Specific
Electrophoresis, Agar Gel, Models, Molecular, Microscopy, Electron, Biochemistry, Genetics and Molecular Biology(all), Macromolecular Substances, DNA, Kinetoplast, Animals, Nucleic Acid Conformation, Crithidia fasciculata, Deoxyribonucleases, Type II Site-Specific
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 152 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
