<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 6461416
Permeabilized PtK1 cells continue to undergo anaphase chromosome movements provided MgATP is included in the lysis medium. However, chromosome-to-pole movement (anaphase A) and spindle elongation (anaphase B) differ with respect to nucleotide requirements. The rate of anaphase B depends on the concentration of ATP in the lysis medium; two-thirds the maximal rate is observed in 0.2 mM ATP. However, other nucleotides, such as ITP, CTP and GTP, cannot substitute for ATP. Spindle elongation is blocked by the addition of nonhydrolyzable ATP analogs. ADP, AMP and inhibitors such as vanadate, the magnesium chelator EDTA and sulfhydryl reagents. Anaphase does no require exogenous ATP and is unaffected by these inhibitors. These results are consistent with "dynein-like" ATPase involvement during spindle elongation, and rule out the possibility of tubulin-dynein and actomyosin mechanochemistry during anaphase A. I suggest that chromosome-to-pole movement involves the collapse of an elastic component in the spindle. Force generation could be provided by microtubule depolymerization or by the contraction of a nonmicrotubule microtrabecular lattice.
Kinetics, Adenosine Triphosphate, Cell Membrane Permeability, Dyneins, Anaphase, Microtubules, Cells, Cultured, Chromosomes, Substrate Specificity
Kinetics, Adenosine Triphosphate, Cell Membrane Permeability, Dyneins, Anaphase, Microtubules, Cells, Cultured, Chromosomes, Substrate Specificity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 117 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |