<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 3317028
The fundamental problems that face us in the development of suitable assay systems for the detection of potentially aneugenic (aneuploidy-inducing) chemicals include: (a) the diversity of cellular targets and mechanisms where perturbations of structure and function may give rise to changes in chromosome number, and (b) the phylogenetic differences that exist between species in their mechanism and kinetics of cell division and their metabolic profiles. A diverse range of assay systems have been developed, which have been shown to have potential for use in the detection of either changes in chromosome number or of perturbations of the events which may be causal in the induction of aneuploidy. Chromosome number changes may be detected cytologically by karyotypic analysis, or by the use of specialised strains in which aneuploid progeny may be observed due to phenotypic differences with aneuploid parental cells or whole organisms. Techniques for the detection of cellular target modifications range from in vitro studies of tubulin polymerisation to observations of the behaviour of various cellular organelles and their fidelity of action during the division cycle. The diversity of mechanisms which may give rise to aneuploidy and the qualitative relevance of events observed in experimental organisms compared to man make it unlikely that the detection and risk assessment of the aneugenic activity of chemicals will be possible using a single assay system. Optimal screening and assessment procedures will thus be dependent upon the selection of an appropriate battery of predictive tests for the measurement of the potentially damaging effects of aneuploidy induction.
Mutagenicity Tests, Fungi, Mitosis, Spindle Apparatus, Aneuploidy, Microtubules, Cytogenetics, Meiosis, Animals, Cells, Cultured, Mutagens
Mutagenicity Tests, Fungi, Mitosis, Spindle Apparatus, Aneuploidy, Microtubules, Cytogenetics, Meiosis, Animals, Cells, Cultured, Mutagens
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 56 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |