
pmid: 6755120
Experiments were done to examine the analgesic effect of thiorphan alone or in combination with stress in mice. Analgesia was assessed by measuring jump latencies from a 55 degrees C hot plate. Thiorphan exhibited weak analgesic properties evidenced by significant increases in jump latencies only after 300 mg/kg i.p. Additional experiments were done to see the effect of i.c.v. administration of thiorphan in the mouse hot plate test. Control experiments revealed that either i.c.v. saline or sham caused naloxone reversible analgesia which was potentiated by thiorphan (100 mg/kg i.p.). Immobilization stress-induced analgesia was also potentiated by thiorphan (100 mg/kg i.p.) and antagonized by naloxone (10 mg/kg i.p.). The results suggest that stress-induced analgesia in the mouse is associated with an endogenous opioid mechanism which is potentiated when enkephalin degradation is inhibited by thiorphan.
Amino Acids, Sulfur, Mice, Thiorphan, Naloxone, Stress, Physiological, Tiopronin, Animals, Pain, Neprilysin, Protease Inhibitors
Amino Acids, Sulfur, Mice, Thiorphan, Naloxone, Stress, Physiological, Tiopronin, Animals, Pain, Neprilysin, Protease Inhibitors
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
