Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Life Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Life Sciences
Article . 1982 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Life Sciences
Article . 1983
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thiorphan potentiation of stress-induced analgesia in the mouse

Authors: E.H. O'Keefe; R. Greenberg;

Thiorphan potentiation of stress-induced analgesia in the mouse

Abstract

Experiments were done to examine the analgesic effect of thiorphan alone or in combination with stress in mice. Analgesia was assessed by measuring jump latencies from a 55 degrees C hot plate. Thiorphan exhibited weak analgesic properties evidenced by significant increases in jump latencies only after 300 mg/kg i.p. Additional experiments were done to see the effect of i.c.v. administration of thiorphan in the mouse hot plate test. Control experiments revealed that either i.c.v. saline or sham caused naloxone reversible analgesia which was potentiated by thiorphan (100 mg/kg i.p.). Immobilization stress-induced analgesia was also potentiated by thiorphan (100 mg/kg i.p.) and antagonized by naloxone (10 mg/kg i.p.). The results suggest that stress-induced analgesia in the mouse is associated with an endogenous opioid mechanism which is potentiated when enkephalin degradation is inhibited by thiorphan.

Related Organizations
Keywords

Amino Acids, Sulfur, Mice, Thiorphan, Naloxone, Stress, Physiological, Tiopronin, Animals, Pain, Neprilysin, Protease Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!