<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Let \(\Omega_ 0\), \(D\subset\mathbb{R}^ N\) be bounded, connected and smooth domains and \(R\) a connected set such that there exist \(\alpha,\beta\) satisfying \[ \{(x,y)\in\mathbb{R}\times\mathbb{R}^{N-1}: | x|0\), \(R_ \varepsilon=\{(\varepsilon x,\varepsilon^ \eta y): (x,y)\in R\}\) and \(D_ \varepsilon=\{\varepsilon x,\varepsilon y):(x,y)\in D\}\), \(\Omega_ \varepsilon=\Omega_ 0\cup D_ \varepsilon\cup R_ \varepsilon\), \(S_ \gamma=\{(x,y)\in\mathbb{R}\times\mathbb{R}^{N-1}: x^ 2+| y|^ 2\leq\gamma^ 2\}\cap\overline{\Omega_ 0}\). For \(0\leq\varepsilon(N+1)/(N-1)\) then \(\lim_{\varepsilon\to0}\lambda^ \varepsilon_ 1=0,\;\lim_{\varepsilon\to0}\lambda^ \varepsilon_ m=\lambda^ 0_{m-1} \hbox { for } m\geq2;\) \[ \lim_{\varepsilon\to0}\omega^ \varepsilon_ 1=0 \hbox { in } H^ 1(\Omega_ 0),\;\lim_{\varepsilon\to0} |\omega^ \varepsilon_ 1|_{L^ 2(R_ \varepsilon)}=0,\;\lim_{\varepsilon\to0} |\omega^ \varepsilon_ 1|_{L^ 2(D_ \varepsilon)}=1,\;\lim_{\varepsilon\to0}\left((\int_{D_ \varepsilon}\omega^ \varepsilon_ 1dx)^ 2/| D_ \varepsilon|\right)=1; \] for any sequence of positive numbers \((\varepsilon_ k)_{k\in\mathbb{N}}\), with \(\varepsilon_ k\to0\), there exist a subsequence \((\delta_ k)_{k\in\mathbb{N}}\) and a complete system of orthogonal eigenfunctions \((\omega^ 0_ m)_{m\in\mathbb{N}}\) for the problem \[ -\Delta u=\lambda u\hbox{ in } \Omega_ 0, \quad\partial_ nu=0 \hbox { on } \partial\Omega_ 0, \] such that \(\omega_ m^{\delta_ k}\to\omega^ 0_{m-1}\) in \(H^ 1(\Omega_ 0)\), \(|\omega_ m^{\delta_ k}|_{H^ 1(D_{\delta_ k}\cup R_{\delta_ k})}\to0\) for \(m\geq2\); if \(\Omega_ 0\) is a \(C^ \infty\) domain, for any \(\ell\geq1\) and \(\gamma\in]0,\gamma_ 0[\) we have \(\lim_{\varepsilon\to0}\omega^ \varepsilon_ 1=0\) in \(H^ \ell(\Omega_ 0\backslash S_ \gamma)\), \(\omega_ m^{\delta_ k}\to\omega^ 0_{m-1}\) in \(H^ \ell(\Omega_ 0\backslash S_ \gamma)\) for \(m\geq2\). The same questions for the mixed boundary value problem and for the Neumann problem in domains with thin channels are also investigated.
complete system of orthogonal eigenfunctions, mixed boundary value problem, Neumann problem, General topics in linear spectral theory for PDEs, Ill-posed problems for PDEs, domains with thin channels, Analysis
complete system of orthogonal eigenfunctions, mixed boundary value problem, Neumann problem, General topics in linear spectral theory for PDEs, Ill-posed problems for PDEs, domains with thin channels, Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |