Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 1996 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 1996
FEBS Letters
Article . 1996
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attempts to convert chymotrypsin to trypsin

Authors: László Szilágyi; William J. Rutter; László Gráf; István Venekei; István Venekei;

Attempts to convert chymotrypsin to trypsin

Abstract

Trypsin and chymotrypsin have specificity pockets of essentially the same geometry, yet trypsin is specific for basic while chymotrypsin for bulky hydrophobic residues at the PI site of the substrate. A model by Steitz, Henderson and Blow suggested the presence of a negative charge at site 189 as the major specificity determinant: Asp189 results in tryptic, while the lack of it chymotryptic specificity. However, recent mutagenesis studies have shown that a successful conversion of the specificity of trypsin to that of chymotrypsin requires the substitution of amino acids at sites 138, 172 and at thirteen other positions in two surface loops, that do not directly contact the substrate. For further testing the significance of these sites in substrate discrimination in trypsin and chymotrypsin, we tried to change the chymotrypsin specificity to Typsin‐like specificity by introducing reverse substitutions in rat chymotrypsin. We report here that the specificity conversion is poor: the Ser189Asp mutation reduced the activity but the specificity remained chymotrypsin‐like; on further substitutions the activity decreased further on both tryptic and chymotryptic substrates and the specificity was lost or became slightly Typsin‐like. Our results indicate that in addition to structural elements already studied, further (chymotrypsin) specific sites have to be mutated to accomplish a chymotrypsin → trypsin specificity conversion.

Keywords

Models, Molecular, Binding Sites, Base Sequence, Protein Conformation, Molecular Sequence Data, Hydrogen Bonding, Saccharomyces cerevisiae, Substrate discrimination, Protein Structure, Secondary, Recombinant Proteins, Chymotrypsinogen, Substrate Specificity, Rats, Enteropeptidase, Kinetics, Oligodeoxyribonucleotides, Mutagenesis, Site-Directed, Animals, Chymotrypsin, Point Mutation, Trypsin, Specificity conversion, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
bronze