Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 1996
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct binding of Torpedo syntrophin to dystrophin and the 87 kDa dystrophin homologue

Authors: Tim Dwyer; Tim Dwyer; Stanley C. Froehner;

Direct binding of Torpedo syntrophin to dystrophin and the 87 kDa dystrophin homologue

Abstract

Syntrophin, a 58‐kDa membrane‐associated protein, is one component of a protein complex associated with dystrophin and other members of the dystrophin family, including the 87‐kDa homologue (87K protein). To characterize interactions between syntrophin and 87K protein, we used an in vitro overlay binding assay. We demonstrate that purified Torpedo syntrophin binds directly to dystrophin and 87K. By expressing overlapping regions of the 87K protein as bacterial fusion proteins for binding targets, we show that a 52‐amino acid region of 87K (residues 375–426) is sufficient for binding syntrophin.

Keywords

Electric Organ, Base Sequence, Sequence Homology, Amino Acid, Recombinant Fusion Proteins, Cell Membrane, Molecular Sequence Data, Membrane Proteins, Muscle Proteins, Torpedo, Polymerase Chain Reaction, Binding site, Dystrophin, Molecular Weight, Animals, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Cloning, Molecular, Syntrophin, DNA Primers, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%