
AbstractColoring a signed graph by signed colors, one has a chromatic polynomial with the same enumerative and algebraic properties as for ordinary graphs. New phenomena are the interpretability only of odd arguments and the existence of a second chromatic polynomial counting zero-free colorings. The generalization to voltage graphs is outlined.
Graph theory, Coloring of graphs and hypergraphs, voltage graph, acyclic orientation, Discrete Mathematics and Combinatorics, chromatic polynomial, Theoretical Computer Science
Graph theory, Coloring of graphs and hypergraphs, voltage graph, acyclic orientation, Discrete Mathematics and Combinatorics, chromatic polynomial, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 111 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
