Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1976 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptional diversity in myogenesis

Authors: Arnold I. Caplan; Charles P. Ordahl;

Transcriptional diversity in myogenesis

Abstract

Abstract We have measured the change in RNA transcript diversity during in vivo myogenesis in the chick limb by means of saturation hybridization of whole cell RNA to nonrepetitive DNA. We find that transcript diversity decreases as proliferating myoblasts fuse to form multinucleate myotubes. Specifically, RNA from limb mesoblasts at, or about, the time of phenotypic commitment (stage 24, Day 4.5) hybridizes to twice as much nonrepetitive DNA as does RNA from fully fused muscle (Day 18 of development through adulthood). The level of transcript diversity found at stage 24 remains high throughout the proliferative phase of myogenesis (through Day 12) and diminishes during the fusion phase (Days 10–18). Additive hybridization experiments indicate that the RNA present during fusion is homologous to RNA present in proliferating myoblasts, suggesting that the change in transcript diversity does not include large scale transcription of previously untranscribed sequences during this in vivo developmental transition.

Related Organizations
Keywords

Time Factors, Transcription, Genetic, Muscles, Animals, Hybridization, Genetic, RNA, Chick Embryo, DNA, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!