Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 1989
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orientation of the semicircular canals in rat

Authors: R H, Blanks; Y, Torigoe;

Orientation of the semicircular canals in rat

Abstract

The orientation of the rat semicircular canals was determined using one of two techniques. Null point analysis was used to define physiologically the planar equations of the anterior (n = 15) and posterior canals (n = 15); equations for the horizontal canal (n = 19) were determined using an anatomical dissection technique. Canal orientation was defined with respect to stereotaxic coordinate system and, for comparison, relative to head position during freeze (startle) behavior. Results show that ipsilateral canal planes are orthogonal within 4-8 degrees, and pairs of right-left synergistic pairs are essentially co-planar. The horizontal canals are inclined upwards 35 degrees with respect to the horizontal plane, but a head position of 43 degrees nose-down was determined to produce near optimal horizontal canal and minimal vertical canal activation with horizontal rotation. Finally, a loud or unexpected auditory stimulus initiates a freeze (startle) response in rat characterized by an transient followed by a sustained head position lasting several seconds. Transients are complete within 300-400 ms. Thereafter, the head becomes momentarily stabilized in the startle position which averaged 14 +/- 8 degrees (nose-down with respect to horizontal stereotaxic zero) across the population (n = 14). The response habituated only slightly, but the final position was sufficiently variable so as to limit the usefulness of the freeze (startle) position as a reference of semicircular canal position in the rat.

Related Organizations
Keywords

Stereotaxic Techniques, Reflex, Startle, Orientation, Animals, Semicircular Canals, Rats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!