Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 1977 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 1977
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efferent connections of the hippocampal formation in the rat

Authors: Allan Siegel; Richard C. Meibach;

Efferent connections of the hippocampal formation in the rat

Abstract

In this investigation the projections of the hippocampal formation to the septal area and hypothalamus were studied in the rat with the combined use of 3H-amino acid radioautography and horseradish peroxidase histochemistry. The results indicate that all of the fibers which project to the hypothalamus and the majority of fibers which project to the septum arise from the subicular cortex and not from hippocampal pyramidal cells. The projection to both of these areas are topographically organized along the longitudinal axis of the hippocampal formation. Specifically, fibers from subicular cortical cells situated at the septal end of the hippocampal formation which project through the medial part of the dorsal fornix terminate in the dorsomedial quadrant of the lateral septal nucleus and in the dorsal portion of the pars posterior of the medial mammillary nucleus. Fibers from progressively more posteroventral levels of the hippocampal formation which project through more lateral portions of the dorsal fornix and fimbria terminate in progressively lateral and ventral quadrants of the lateral septal nucleus and in progressively more ventral portions of the pars posterior. Concerning the specific origin of the fornix system, fibers from only the prosubiculum and subiculum project through both the pre- and postcommissural fornix. Hippocampal pyramidal cells from all CA fields have a restricted projection through the precommissural fornix and terminate in the caudal half of the septum while the presubiculum projects solely through the postcommissural fornix. The medial corticohypothalamic tract (MCHT) was found to arise from cells located in anterior ventral levels of the subicular cortex. Fibers from this tract appeared to be distributed throughout the pericellular region of the entire ventromedial extent of the hypothalamus from the level of the suprachiasmatic nucleus through the level of the medial mammillary nucleus. In this way, the mammillary bodies receive input from the subicular cortex via two routes: the descending column of the fornix and the MCHT.

Keywords

Mammillary Bodies, Terminology as Topic, Models, Neurological, Hypothalamus, Animals, Septum Pellucidum, Efferent Pathways, Hippocampus, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    453
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
453
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!