Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biorheologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biorheology
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Biorheology
Article . 1996
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rheology of blood coagulation

Authors: M Kaibara;

Rheology of blood coagulation

Abstract

There have been a number of investigations on coagulation reactions of blood as well as on coagulation factors including fibrinogen and thrombin. With the progress of clotting, the viscosity and rigidity of blood increase, facts related to the clot structure of fibrin. Therefore, rheological measurements make it possible to investigate the process of blood clotting as well as the properties of the fibrin clot. In this paper, our rheological studies on blood coagulation are summarized. The network structure of fibrin clots formed under different conditions is discussed from the kinetic analysis of the change of dynamic rigidity modulus during clotting. Also it will be shown that rheological techniques make it possible to analyze the initial coagulation reaction of blood in contact with components constituting the vascular vessel. The analysis indicates that a coagulation factor in plasma is activated on the erythrocyte surface.

Related Organizations
Keywords

Fibrin, Erythrocyte Membrane, Hemorheology, Animals, Humans, Blood Coagulation, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?