<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 743318
Abstract It has been generally assumed that a tetrahydropterin (2-amino-5,6,7,8-tetrahydro-4-pteridinone) is essential for activity of the three aromatic amino acid hydroxylases. In this report it is shown that appropriately substituted pyrimidines can assume the role of cofactor for phenylalanine hydroxylase. 2,5,6-Triamino-4-pyrimidinone(V) and 5-benzylamino-2,6-diamino-4-pyrimidinone(VI) possess the same Km values (0.1 mM and 0.003 mM) and stoichiometry of tyrosine generated to cofactor consumed (0.4 and 1.0) as their corresponding pteridine analogs, tetrahydropterin(III) and 6-phenyltetrahydropterin(IV). However, the rates with pyrimidines are lower. The ratio of rates V III = 0.045 and VI IV = 0.015 . These results indicate that pteridine carbons 6 and 7 are not fundamental to cofactor binding or function, though they markedly influence the maximum velocity of hydroxylation. Pyrimidine cofactors of phenylalanine hydroxylase are valuable probes for the elucidation of the binding forces, transition states, and mechanism of oxygen activation of these hydroxylases.
Biopterins, Chemistry, Kinetics, Structure-Activity Relationship, Chemical Phenomena, Pteridines, Phenylalanine Hydroxylase, Pyrimidinones
Biopterins, Chemistry, Kinetics, Structure-Activity Relationship, Chemical Phenomena, Pteridines, Phenylalanine Hydroxylase, Pyrimidinones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |