Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 1981 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ochratoxin A, an in vivo inhibitor of renal phosphoenolpyruvate carboxykinase

Authors: Herman Meisner; Patricia Meisner;

Ochratoxin A, an in vivo inhibitor of renal phosphoenolpyruvate carboxykinase

Abstract

Abstract Ochratoxin A, a nephrotoxin produced as a secondary metabolite by A. ochraceus, is a potent inhibitor of renal PEPCK activity, in vivo. When fed orally to rats for 2 days, renal PEPCK activity is reduced 50% by a total dose of 0.3-0.5 mg toxin. Renal gluconeogenic capacity is reduced only after PEPCK activity is inhibited by 50%. Hepatic PEPCK activity is unaffected up to 1.5-2.0 mg ochratoxin A, which were the highest doses tested. Other enzymes located in proximal convoluted tubules, including phosphatedependent glutaminase, γ-glutamyl transpeptidase, pyruvate carboxylase, and Na,K-ATPase, are not affected. Renal protein synthesis from [3H]phenylalanine or [3H]leucine is inhibited 30–40% by ochratoxin A in vivo. By covalently coupling the toxin to albumin with carbodiimide or mixed anhydride, the inhibitory effect on renal PEPCK activity is retained, but protein synthesis is not affected and cytological evidence of nephrotoxicity is lost. Injection of the ochratoxin A-albumin carbodiimide complex results in a decrease of hepatic PEPCK activity as well. Removal of the phenylalanine group from the toxin prevents the in vivo inhibition of PEPCK activity, as well as protein synthesis. We conclude that the decrease in renal PEPCK activity, in vivo, requires the phenylalanine group of ochratoxin A, and occurs by a mechanism independent of the known nephrotoxicity effects.

Related Organizations
Keywords

Male, Protein Biosynthesis, Animals, Electrophoresis, Polyacrylamide Gel, Phosphoenolpyruvate Carboxykinase (GTP), Kidney, Ochratoxins, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?