<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 4716390
Abstract A titrimetric method for the assay of glycogen phosphorylase is presented in which a direct and continuous course of reaction is obtained over a wide range of enzyme concentrations (7.2–378.3 μg/ml). The method resulted in rates which were in agreement with those obtained using the inorganic phosphate method, and the expected value of the equilibrium concentration ratio of inorganic phosphate to glucose-1-phosphate was obtained. The method can be extended to higher concentrations, and it can be used to measure the rate in either direction. The K m and V max values of each substrate, glucose-1-phosphate and inorganic phosphate, were determined.
Kinetics, Phosphorylases, Muscles, Osmolar Concentration, Methods, Animals, Rabbits, Hydrogen-Ion Concentration, Mathematics
Kinetics, Phosphorylases, Muscles, Osmolar Concentration, Methods, Animals, Rabbits, Hydrogen-Ion Concentration, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |