Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repository of the Cz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Catalysis Today
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution

Authors: Petr Krtil; Maki Okube; Maki Okube; Kateřina Macounová; Valery Petrykin; Sanjeev Mukerjee;

Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution

Abstract

Nano-particulate Co doped ruthenium dioxide electrocatalysts of the general formula Ru1−xCoxO2−y (0 < x 0.3) were prepared by a co-precipitation method. The electrocatalysts with x < 0.2 conform to a single phase nano-crystalline materials. On the local level the Co forms clusters dispersed in the original rutile-like matrix. The local environment of the Co conforms to a rutile model which preserves the cationic arrangement but suppresses the probability of the Ru–Ru and Co–Co neighbors along the shortest metal–metal bonds. The electrocatalytic activity of the synthesized Ru1−xCoxO2-y materials in oxygen evolution is comparable with that of the non-doped ruthenium dioxide and little depends on the actual Co content. In presence of chlorides the Co doped materials are more selective towards oxygen evolution compared with the non doped ruthenia. The enhanced oxygen evolution in the case of Co doped electrocatalysts can be attributed to a chemical recombination of surface confined oxo-species. The selectivity shift towards oxygen evolution can be linked with limited activity of the Ru1−xCoxO2-y materials in the chlorine evolution reaction which seems to be relatively weakly dependent on the chloride concentration.

Keywords

oxygen evolution, chlorine evolution, oxide, 540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Green