Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Surface Science
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy

Authors: Zemek, J. (Josef); Houdková, J. (Jana); Jiříček, P. (Petr); Ižák, T. (Tibor); Kalbáč, M. (Martin);

Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy

Abstract

Abstract We analyze air-exposed and cleaned graphene samples grown by the chemical vapor deposition method on polycrystalline copper. Raman spectra verify their single-layer nature. C 1s and C KVV Auger spectra confirm the dominant C sp2 coordination in the films. We use angular-resolved C 1s, O 1s, and Cu 3p photoelectron spectra to acquire non-destructive concentration depth profiles and for in-depth distribution of resolved bonding states by the Maximum Entropy Method. The elemental distributions show that the air-exposed surfaces of the samples are enriched by carbon- and oxygen- bearing species, resulting in an overlayer 0.6 nm in thickness. The in-depth distributions of the resolved bonding states reveal that the oxygen bonded to carbon is located at the top surface and the oxygen bonded to copper is located at the graphene/copper interface. Almost no oxygen is present at the surface of the samples cleaned by annealing. The percentage of carbon falls by ~40%. The thickness of the carbon overlayer falls to about 0.3 nm, and the graphene layer completely covers the substrate. We emphasize that the results for the in-depth distribution of element concentrations and for resolved chemical bonding states are obtained nondestructively, i.e. without any modifications to surface composition and bonding.

Related Organizations
Keywords

angular-resolved core-level photoelectron spectroscopy (ARXPS), single-layer graphene, concentration depth profile reconstruction, maximum entropy method, Raman spectroscopy, X-ray-induced Auger electron spectroscopy (XAES)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!