
handle: 11104/0305033
Abstract We analyze air-exposed and cleaned graphene samples grown by the chemical vapor deposition method on polycrystalline copper. Raman spectra verify their single-layer nature. C 1s and C KVV Auger spectra confirm the dominant C sp2 coordination in the films. We use angular-resolved C 1s, O 1s, and Cu 3p photoelectron spectra to acquire non-destructive concentration depth profiles and for in-depth distribution of resolved bonding states by the Maximum Entropy Method. The elemental distributions show that the air-exposed surfaces of the samples are enriched by carbon- and oxygen- bearing species, resulting in an overlayer 0.6 nm in thickness. The in-depth distributions of the resolved bonding states reveal that the oxygen bonded to carbon is located at the top surface and the oxygen bonded to copper is located at the graphene/copper interface. Almost no oxygen is present at the surface of the samples cleaned by annealing. The percentage of carbon falls by ~40%. The thickness of the carbon overlayer falls to about 0.3 nm, and the graphene layer completely covers the substrate. We emphasize that the results for the in-depth distribution of element concentrations and for resolved chemical bonding states are obtained nondestructively, i.e. without any modifications to surface composition and bonding.
angular-resolved core-level photoelectron spectroscopy (ARXPS), single-layer graphene, concentration depth profile reconstruction, maximum entropy method, Raman spectroscopy, X-ray-induced Auger electron spectroscopy (XAES)
angular-resolved core-level photoelectron spectroscopy (ARXPS), single-layer graphene, concentration depth profile reconstruction, maximum entropy method, Raman spectroscopy, X-ray-induced Auger electron spectroscopy (XAES)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
