Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Bionic En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bionic Engineering
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
MPG.PuRe
Article . 2019
Data sources: MPG.PuRe
versions View all 2 versions
addClaim

Rat Navigation by Stimulating Somatosensory Cortex

Authors: Ahmadi, A.; Behroozi, M.; Shalchyan, V.; Daliri, M.;

Rat Navigation by Stimulating Somatosensory Cortex

Abstract

One of the most important topics in neuroscience is the issue of brain electrical stimulation and its widespread use. Based on this issue, rat robot, a rat navigation system was introduced in 2002, which has utilized brain electric stimulations as a guide and a reward for driving rats. Recently systems have been designed which are automatically navigated by a computer. One of the obstacles in the way of these systems is to select the stimulation frequency of the somatosensory cortex for the rotation action. In this paper, the stimulation parameters of the somatosensory cortex for rotation in the T-shaped maze were examined for the first time with applying only one pulse train. Then, the optimized parameters have been utilized in a complex maze. The results show that the performance is directly related to the pulse width and it has an inverse relationship with the pulse intervals. With optimal parameters, correctly controlling the animal in 90% of the trials in the T-maze, were managed, and in the complex maze, about 70% of the stimuli with optimized parameters were with only applying one pulse train. The results show that the stimulation parameters for navigation with only one pulse train are well optimized, and the results of this paper can be a trigger for an automatic navigation and reduce the computational costs and automatic system errors.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!