Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel fuzzy finite-horizon economic lot and delivery scheduling model with sequence-dependent setups

Authors: Esmat Sangari; Fariborz Jolai; Mohamad Sadegh Sangari;

A novel fuzzy finite-horizon economic lot and delivery scheduling model with sequence-dependent setups

Abstract

AbstractThis paper addresses the economic lot and delivery scheduling problem (ELDSP) within three-echelon supply chains, focusing on the complexities of demand uncertainty, limited shelf-life of products, and sequence-dependency of setups. We develop a novel mixed-integer non-linear programming (MINLP) model for a supply chain comprising one supplier, multiple manufacturers with flexible flow shop (FFS) production systems, and multiple retailers, all operating over a finite planning horizon. The common cycle (CC) strategy is adopted as the synchronization policy. Our model employs fuzzy set theory, particularly the “Me measure,” to effectively handle the retailers’ demand uncertainty. Our findings indicate that total supply chain costs escalate with an increase in demand, final components’ holding costs, and sequence-dependent setup costs, but decrease with increasing production rates. Furthermore, while total costs are significantly sensitive to changes in demand, they are relatively insensitive to fluctuations in sequence-dependent setup times. The models developed offer valuable managerial insights for optimizing costs in synchronized multi-stage supply chains, aiding managers in making informed decisions about production lot sizes and delivery schedules under both deterministic and fuzzy demand scenarios. Additionally, the proposed models bridge key research gaps and provide robust decision-making tools for cost optimization, enhancing supply chain synchronization in practical settings.

Related Organizations
Keywords

Flexible flow shop (FFS), Electronic computers. Computer science, Economic lot and delivery scheduling problem (ELDSP), Me measure, Sequence-dependent setups, QA75.5-76.95, Information technology, T58.5-58.64, Fuzzy demand

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold