Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Drug Safety
Article . 2020 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Drug Safety
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
Drug Safety
Article . 2021
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining Social Media and FDA Adverse Event Reporting System to Detect Adverse Drug Reactions

Authors: Ying Li; Antonio Jimeno Yepes; Cao Xiao;

Combining Social Media and FDA Adverse Event Reporting System to Detect Adverse Drug Reactions

Abstract

Adverse drug reactions (ADRs) are unintended reactions caused by a drug or combination of drugs taken by a patient. The current safety surveillance system relies on spontaneous reporting systems (SRSs) and more recently on observational health data; however, ADR detection may be delayed and lack geographic diversity. The broad scope of social media conversations, such as those on Twitter, can include health-related topics. Consequently, these data could be used to detect potentially novel ADRs with less latency. Although research regarding ADR detection using social media has made progress, findings are based on single information sources, and no study has yet integrated drug safety evidence from both an SRS and Twitter.The aim of this study was to combine signals from an SRS and Twitter to facilitate the detection of safety signals and compare the performance of the combined system with signals generated by individual data sources.We extracted potential drug-ADR posts from Twitter, used Monte Carlo expectation maximization to generate drug safety signals from both the US FDA Adverse Event Reporting System and posts from Twitter, and then integrated these signals using a Bayesian hierarchical model. The results from the integrated system and two individual sources were evaluated using a reference standard derived from drug labels. Area under the receiver operating characteristics curve (AUC) was computed to measure performance.We observed a significant improvement in the AUC of the combined system when comparing it with Twitter alone, and no improvement when comparing with the SRS alone. The AUCs ranged from 0.587 to 0.637 for the combined SRS and Twitter, from 0.525 to 0.534 for Twitter alone, and from 0.612 to 0.642 for the SRS alone. The results varied because different preprocessing procedures were applied to Twitter.The accuracy of signal detection using social media can be improved by combining signals with those from SRSs. However, the combined system cannot achieve better AUC performance than data from FAERS alone, which may indicate that Twitter data are not ready to be integrated into a purely data-driven combination system.

Country
Australia
Keywords

Pharmacovigilance, United States Food and Drug Administration, 610, Adverse Drug Reaction Reporting Systems, Humans, 600, Original Research Article, Social Media, United States

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green
hybrid