
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Mutations in the isocitrate dehydrogenase (IDH) 1 gene are commonly found in human glioma, with the majority of low-grade gliomas harboring a recurrent point mutation (IDH1 R132H). Mutant IDH reveals an altered enzymatic activity leading to the synthesis of 2-hydroxyglutarate, which has been implicated in epigenetic mechanisms of oncogenesis. Nevertheless, it is unclear exactly how IDH mutations drive glioma initiation and progression, and it is also not clear why tumors with this mutation generally have a better prognosis than IDH wild-type tumors. Recognition of the high frequency of IDH mutations in glioma [and also in other malignancies, including acute myeloid leukemia (AML) and cholangiocarcinoma] have led to the development of a number of targeted agents that can inhibit these enzymes. Enasidenib and ivosidenib have both gained regulatory approval for IDH mutant AML. Both agents are still in early clinical phases for glioma therapy, as are a number of additional candidates (including AG-881, BAY1436032, and DS1001). A marked clinical problem in the development of these agents is overcoming the blood-brain barrier. An alternative approach to target the IDH1 mutation is by the induction of synthetic lethality with compounds that target poly (ADP-ribose) polymerase (PARP), glutamine metabolism, and the Bcl-2 family of proteins. We conclude that within the last decade, several approaches have been devised to therapeutically target the IDH1 mutation, and that, potentially, both IDH1 inhibitors and synthetic lethal approaches might be relevant for future therapies.
Brain Neoplasms, Glutamine, Antineoplastic Agents, Glioma, Prognosis, Isocitrate Dehydrogenase, Glutarates, Blood-Brain Barrier, Cell Line, Tumor, Mutation, Humans, Enzyme Inhibitors, Poly(ADP-ribose) Polymerases
Brain Neoplasms, Glutamine, Antineoplastic Agents, Glioma, Prognosis, Isocitrate Dehydrogenase, Glutarates, Blood-Brain Barrier, Cell Line, Tumor, Mutation, Humans, Enzyme Inhibitors, Poly(ADP-ribose) Polymerases
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
