
In the present study, a new algorithm named BEXPM-RM is proposed which require no constraint handling techniques to solve portfolio optimization problems subjected to budget, cardinality, and lower/upper bound constraints. The algorithm presented combines the BEX-PM (Thakur et al. in Appl Math Comput 235:292–317, 2014) genetic algorithm (GA) together with repair mechanism (RM) proposed by Chang et al. (Comput Oper Res 27(13):1271–1302, 2000). BEXPM GA tries to efficiently explore the search space whereas repair method suggested by Chang et al. (2000) ensures that a solution string is always feasible subject to the budget, cardinality, and lower/upper bound constraints. To analyze the performance of BEXPM-RM, six portfolio optimization problems are considered from the literature (Chang et al. 2000; Barak et al. in Eur J Oper Res 228(1):141–147, 2013). Among these one problem uses fuzzy set theory and others used probability theory to quantify attributes of a portfolio. In addition to these problems, a new portfolio model is formulated in fuzzy environment to analyze the effect of providing different sets of lower or/and upper bound to an asset.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
