Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cognitive Computatio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cognitive Computation
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rank-Adaptive Non-Negative Matrix Factorization

Authors: Tianming Liang; Dong Shan; Xinzheng Xu; Shifei Ding;

Rank-Adaptive Non-Negative Matrix Factorization

Abstract

Dimension reduction is a challenge task in data processing, especially in high-dimensional data processing area. Non-negative matrix factorization (NMF), as a classical dimension reduction method, has a contribution to the parts-based representation for the characteristics of non-negative constraints in the NMF algorithm. In this paper, the NMF algorithm is introduced to extract local features for dimension reduction. Considering the problem of which NMF is required to define the number of the decomposition rank manually, we proposed a rank-adaptive NMF algorithm, in which the affinity propagation (AP) clustering algorithm is introduced to determine adaptively the number of the decomposition rank of NMF. Then, the rank-adaptive NMF algorithm is used to extract features for the original image. After that, a low-dimensional representation of the original image is obtained through the projection from the original images to the feature space. Finally, we used extreme learning machine (ELM) and k-nearest neighbor (KNN) as the classifier to classify those low-dimensional feature representations. The experimental results demonstrate that the decomposition rank determined by the AP clustering algorithm can reflect the characteristics of the original data. When it is combined with the classification algorithm ELM or KNN and applied to handwritten character recognition, the proposed method not only reduces the dimension of original images but also performs well in terms of classification accuracy and time consumption. A new rank-adaptive NMF algorithm is proposed based on the AP clustering algorithm and the original NMF algorithm. According to this algorithm, the low-dimensional representation of the original data can be obtained without any prior knowledge. In addition, the proposed rank-adaptive NMF algorithm combined with the ELM and KNN classification algorithms performs well.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?