Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao annals of telecommun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
annals of telecommunications - annales des télécommunications
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regularized and incremental decision trees for data streams

Authors: Jean Paul Barddal; Fabrício Enembreck;

Regularized and incremental decision trees for data streams

Abstract

Decision trees are a widely used family of methods for learning predictive models from both batch and streaming data. Despite depicting positive results in a multitude of applications, incremental decision trees continuously grow in terms of nodes as new data becomes available, i.e., they eventually split on all features available, and also multiple times using the same feature, thus leading to unnecessary complexity and overfitting. With this behavior, incremental trees lose the ability to generalize well, be human-understandable, and be computationally efficient. To tackle these issues, we proposed in a previous study a regularization scheme for Hoeffding decision trees that (i) uses a penalty factor to control the gain obtained by creating a new split node using a feature that has not been used thus far and (ii) uses information from previous splits in the current branch to determine whether the gain observed indeed justifies a new split. In this paper, we extend this analysis and apply the proposed regularization scheme to other types of incremental decision trees and report the results in both synthetic and real-world scenarios. The main interest is to verify whether and how the proposed regularization scheme affects the different types of incremental trees. Results show that in addition to the original Hoeffding Tree, the Adaptive Random Forest also benefits from regularization, yet, McDiarmid Trees and Extremely Fast Decision Trees observe declines in accuracy.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?