Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Oncologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Oncology
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Medical Oncology
Article . 2024
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unveiling the potency of FDA-approved oxidopamine HBr for cervical cancer regulation and replication proteins

Authors: Nawal Helmi; Abdullah Hamadi; Osama M. Al-Amer; Hassan A. Madkhali; Atif Abdulwahab A. Oyouni; Amany I. Alqosaibi; Jawaher Almulhim; +3 Authors

Unveiling the potency of FDA-approved oxidopamine HBr for cervical cancer regulation and replication proteins

Abstract

Cervical Cancer remains a women's health concern worldwide and ranks among the most prevalent cancers, particularly in developing countries. Many women are diagnosed with cervical cancer, with a substantial number succumbing to the disease even after the availability of vaccines and drugs. The tumour microenvironment often exhibits immune evasion, including suppression of T-cell activity and altered cytokine, impacting the efficacy of therapeutic interventions and highlighting the need for treatments to modulate the immune response. Despite efforts to promote HPV vaccination and regular screenings, it causes many deaths, underscoring the urgent need for continued research, healthcare access, and rapid drug development or repurposing. In this study, we identified various proteins involved in cervical cancer cell cycle regulation and DNA replication proteins, performed the multitargeted docking with an FDA-approved library, and identified Oxidopamine HBr as a multitargeted drug. Studies extended with pharmacokinetics and compared with the standard values followed by DFT, which supported the compound as a multitargeted inhibitor. Further, the docked complexes were taken for the interaction fingerprints, and it was identified that there are many 9 polar, 5 hydrophobic, 2 aromatic, and 2 basic residues. We extended our studies for 100ns MD Simulation in water, and the computations explored the deviation and fluctuations under 2Å and many intermolecular interactions; the same trajectory files were used for the MM\GBSA studies. All the studies have supported the Oxidopamine HBr as a cervical cancer multitargeted inhibitor-however, experimental studies are needed before human use.

Keywords

Molecular Docking Simulation, United States Food and Drug Administration, Humans, Uterine Cervical Neoplasms, Female, Antineoplastic Agents, Molecular Dynamics Simulation, Drug Approval, United States

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!