Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Endocrinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Endocrine
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Endocrine
Article . 2024
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An observational study on the safety of teprotumumab based on FAERS database

Authors: Xing-Long, Wang; Shan-Shan, Xu; Jian-Bo, Zhou; Zhi-Hui, Song;

An observational study on the safety of teprotumumab based on FAERS database

Abstract

Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab.The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals.This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting.Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients.Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.

Related Organizations
Keywords

Male, Adult, Young Adult, Databases, Factual, Drug-Related Side Effects and Adverse Reactions, Humans, Adverse Drug Reaction Reporting Systems, Female, Middle Aged, Antibodies, Monoclonal, Humanized, United States, Retrospective Studies, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!