Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Rheumatology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Rheumatology Reports
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sirtuins and Accelerated Aging in Scleroderma

Authors: Anne E. Wyman; Sergei P. Atamas;

Sirtuins and Accelerated Aging in Scleroderma

Abstract

Premature activation of aging-associated molecular mechanisms is emerging as an important contributor to many diseases, including scleroderma. Among central regulators of the aging process are a group of histone deacetylases called sirtuins (SIRTs). Recent findings implicate these molecules as pathophysiological players in scleroderma skin and lung fibrosis. The goal of this article is to review recent studies on the involvement of SIRTs in scleroderma from the perspective of aging-related molecular mechanisms.Despite a degree of controversy in this rapidly developing field, the majority of data suggest that SIRT levels are decreased in tissues from patients with scleroderma compared to healthy controls as well as in animal models of scleroderma. Molecular studies reveal several mechanisms through which declining SIRT levels contribute to fibrosis, with the most attention given to modulation of the TGF-β signaling pathway. Activation of SIRTs in cell culture and in animal models elicits antifibrotic effects. Declining SIRT levels and activity are emerging as pathophysiological contributors to scleroderma. Restoration of SIRTs may be therapeutic in patients with scleroderma.

Keywords

Aging, Scleroderma, Systemic, Humans, Sirtuins, Fibrosis, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
bronze