Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Osteoporosis...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Osteoporosis Reports
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Notochord to Nucleus Pulposus Transition

Authors: Brian D. Harfe; Lisa Y. Lawson;

Notochord to Nucleus Pulposus Transition

Abstract

A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

Related Organizations
Keywords

Chordoma, Notochord, Humans, Intervertebral Disc

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!