Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Neurology and Neuroscience Reports
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Imaging the Autonomic Nervous System in Parkinson’s Disease

Authors: Knudsen, Karoline; Borghammer, Per; id_orcid 0000-0001-6391-8052;

Imaging the Autonomic Nervous System in Parkinson’s Disease

Abstract

Patients with Parkinson's disease (PD) often display gastrointestinal and genitourinary autonomic symptoms years or even decades prior to diagnosis. These symptoms are thought to be caused in part by pathological α-synuclein inclusions in the peripheral autonomic and enteric nervous systems. It has been proposed that the initial α-synuclein aggregation may in some PD patients originate in peripheral nerve terminals and then spread centripetally to the spinal cord and brainstem. In vivo imaging methods can directly quantify the degeneration of the autonomic nervous system as well as the functional consequences such as perturbed motility. Here, we review the methodological principles of these imaging techniques and the major findings in patients with PD and atypical parkinsonism.Loss of sympathetic and parasympathetic nerve terminals in PD can be visualized using radiotracer imaging, including 123I-MIBG scintigraphy, and 18F-dopamine and 11C-donepezil PET. Recently, ultrasonographical studies disclosed reduced diameter of the vagal nerves in PD patients. Radiological and radioisotope techniques have demonstrated dysmotility and prolonged transit time throughout all subdivisions of the gastrointestinal tract in PD. The prevalence of objective dysfunction as measured with these imaging methods is often considerably higher compared to the prevalence of subjective symptoms experienced by the patients. Degeneration of the autonomic nervous system may play a key role in the pathogenesis of PD. In vivo imaging techniques provide powerful and noninvasive tools to quantify the degree and extent of this degeneration and its functional consequences.

Related Organizations
Keywords

Tomography, Emission-Computed, Single-Photon, Parkinson Disease, Autonomic Nervous System, PET, Parkinsonian Disorders, SPECT, Positron-Emission Tomography, Autonomic nervous system, Humans, Parkinson, Radionuclide Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!