
pmid: 17076995
Traditionally, statistical estimation of glycemic variability includes computing standard deviation of glucose readings or related statistics (eg, M value, mean amplitude of glucose excursions, and so forth). We advocate an alternative approach using risk measures of variability, which have substantial clinical and numerical advantages. In addition, continuous glucose monitoring (CGM) data have clinically important inherent temporal structure that should be taken into consideration. Thus, temporal variability methods are discussed for the analysis and interpretation of CGM output.
Blood Glucose, Hyperglycemia, Diabetes Mellitus, Humans, Hypoglycemic Agents, Hypoglycemia
Blood Glucose, Hyperglycemia, Diabetes Mellitus, Humans, Hypoglycemic Agents, Hypoglycemia
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
