Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Korean Journal of Ch...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Korean Journal of Chemical Engineering
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solvent-gradient SMB to separate o-xylene and p-xylene

Authors: Thai-Hoang Le; Jin-Il Kim; Yoon-Mo Koo; Nguyen Van Duc Long; Ju Weon Lee;

Solvent-gradient SMB to separate o-xylene and p-xylene

Abstract

In batch chromatography, solvent-gradient operations (SG) produce significant improvement in terms of the enrichment of products and the separation time and the solvent consumption as compared with isocratic operations. This work studied solvent-gradient operation in reversed-phase simulated moving bed unit to separate ortho-xylene and para-xylene. In a solvent-gradient mode, different mobile phase compositions lead to a different retention behavior of solutes, i.e., different adsorption isotherms. Frontal analysis experiments for ortho-xylene and para-xylene were carried out with a reversed-phase column to measure adsorption parameters at several different mobile phase compositions, such as 45%, 50%, 60%, 75% and 90% acetonitrile. Therefore, the parameters in the retention model for solvent-gradient operation in the case of reversed-phase chromatography were estimated and applied to the design of an SMB system. A modified design method for solvent-gradient simulated moving bed chromatography (SG-SMB) was proposed. The robust operating conditions were obtained within the separation region on (φ R , φ E ) plane (φ R and φ E are the volumetric content of organic modifier in the raffinate and the extract streams, respectively). The performance results of isocratic and solvent-gradient SMB were compared. A partial-discard strategy and increasing of the solvent gradient level were also applied to improve the performance of the SG-SMB.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?