Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metallurgical and Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metallurgical and Materials Transactions A
Article . 2005 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grain refinement of magnesium alloys

Authors: St. John, David H.; Qian, Ma; Easton, Mark A.; Cao, Peng; Hildebrand, Zoë;

Grain refinement of magnesium alloys

Abstract

The literature on grain refinement of magnesium alloys is reviewed with regard to two broad groups of alloys: alloys that contain aluminum and alloys that do not contain aluminum. The alloys that are free of aluminum are generally very well refined by Zr master alloys. On the other hand, the understanding of grain refinement in aluminum bearing alloys is poor and in many cases confusing probably due to the interaction between impurity elements and aluminum in affecting the potency of nucleant particles. A grain refinement model that was developed for aluminum alloys is presented, which takes into account both alloy chemistry and nucleant particle potency. This model is applied to experimental data for a range of magnesium alloys. It is shown that by using this analytical approach, new information on the refinement of magnesium alloys is obtained as well as providing a method of characterizing the effectiveness of new refiners. The new information revealed by the model has identified new directions for further research. Future research needs to focus on gaining a better understanding of the detailed mechanisms by which refinement occurs and gathering data to improve our ability to predict grain refinement for particular combinations of alloy and impurity chemistry and nucleant particles.

Country
Australia
Keywords

Mg-al Alloys, Multidisciplinary, Iron, Materials Science, coatings, Nucleant, bonding, Aluminum-alloys, Master Alloy, Inoculation, C1, Pure Magnesium, 669, etc.), Solute, Metallurgy & Metallurgical Engineering, Zirconium, Model, 291499 Materials Engineering not elsewhere classified, 680305 Metals (composites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    616
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
616
Top 0.1%
Top 0.1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?