Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Academiae Medic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Academiae Medicinae Wuhan
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and efficacy of surgery for horizontal idiopathic nystagmus with abnormal head posture and strabismus

Authors: Lin Song; Ping Wang; Liping Lou;

Design and efficacy of surgery for horizontal idiopathic nystagmus with abnormal head posture and strabismus

Abstract

The design and efficacy of surgery for horizontal idiopathic nystagmus (HIN) with abnormal head posture and strabismus were investigated. Different surgical procedures were selected according to the angle of head turn in 44 cases of HIN with abnormal head posture and strabismus. For patients with a head turn of 15° or less, the Anderson procedure was used; the yoke muscles were recessed upon slow-phase. For patients with a head turn between 15° and 25°, the surgery was designed as a Kestenbaum 5-4-4-5 procedure. For patients with a head turn of 25° or more, the surgery was designed as a Parks 5-8-6-7 procedure. The surgery to correct the abnormal head posture was performed on the fixating eye while that to correct the deviation was then performed on the non-fixating eye at the same time. The amount of surgery of the horizontal rectus muscles on the non-fixating eye was sum of the angle of head turn and the degree of deviation, which was calculated as follows: recession/resection amount of medial and lateral rectis / 2×5 =angle of head turn ± degree of deviation. The results showed as follows: (1) Visual acuity: the visual acuity in the primary ocular position increased two lines or more in 35 patients, accounting for 79.55%. Nine patients had no or only one-line improvement, accounting for 20.45% of the entire study population; (2) The degree of deviation in the primary ocular position: 37 cases had a normal primary ocular position or the degree of deviation ≤ 8(δ) after surgery, accounting for 84.09%. Six patients had a residual degree of deviation of 8(δ)-15(δ), accounting for 13.64%. One patient had a residual degree of deviation >20(δ), accounting for 2.27% of the patients examined; (3) Abnormal head posture: 34 patients had a normal head posture or a head turn of less than 5°, accounting for 72.27%. Eight patients had a residual head turn of 5°-15°, accounting for 18.18%. Two patients had a head turn of 15°-25°, accounting for 4.55%. It was concluded that different surgical procedures based on the angle of head turn and the relationship between deviation and null zone can eliminate anomalous head posture, correct deviation, and improve vision acuity in the primary ocular position.

Related Organizations
Keywords

Male, Torsion Abnormality, Adolescent, Posture, Ophthalmologic Surgical Procedures, Nystagmus, Pathologic, Strabismus, Young Adult, Oculomotor Muscles, Child, Preschool, Humans, Female, Child, Head

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!