
The evolutionary relationships between species are typically represented in the biological literature by rooted phylogenetic trees. However, a tree fails to capture ancestral reticulate processes, such as the formation of hybrid species or lateral gene transfer events between lineages, and so the history of life is more accurately described by a rooted phylogenetic network. Nevertheless, phylogenetic networks may be complex and difficult to interpret, so biologists sometimes prefer a tree that summarises the central tree-like trend of evolution. In this paper, we formally investigate methods for transforming an arbitrary phylogenetic network into a tree (on the same set of leaves) and ask which ones (if any) satisfy a simple consistency condition. This consistency condition states that if we add additional species into a phylogenetic network (without otherwise changing this original network) then transforming this enlarged network into a rooted phylogenetic tree induces the same tree on the original set of species as transforming the original network. We show that the LSA (lowest stable ancestor) tree method satisfies this consistency property, whereas several other commonly used methods (and a new one we introduce) do not. We also briefly consider transformations that convert arbitrary phylogenetic networks to another simpler class, namely normal networks.
15 pages, 6 figures
lowest stable ancestor, Models, Genetic, 05C05 92D15 05C20, Populations and Evolution (q-bio.PE), trees, Mathematical Concepts, transformations, Biological Evolution, Evolution, Molecular, phylogenetic networks, Problems related to evolution, FOS: Biological sciences, Quantitative Biology - Populations and Evolution, Phylogeny
lowest stable ancestor, Models, Genetic, 05C05 92D15 05C20, Populations and Evolution (q-bio.PE), trees, Mathematical Concepts, transformations, Biological Evolution, Evolution, Molecular, phylogenetic networks, Problems related to evolution, FOS: Biological sciences, Quantitative Biology - Populations and Evolution, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
