
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 17973174
We investigate the origin of the regularity and synchrony which have been observed in numerical experiments of two realistic models of molecular motors, namely Fisher-Kolomeisky's model of myosin V for vesicle transport in cells and Duke's model of myosin II for sarcomere shortening in muscle contraction. We show that there is a generic organizing principle behind the emergence of regular gait for a motor pulling a large cargo and synchrony of action of many motors pulling a single cargo. These results are surprising in that the models used are inherently stochastic, and yet they display regular behaviors in the parameter range relevant to experiments. Our results also show that these behaviors are not tied to the particular models used in these experiments, but rather are generic to a wide class of motor protein models.
Models, Molecular, Myosin Type II, Sarcomeres, Periodicity, Stochastic Processes, Movement, Cytoplasmic Vesicles, Myosin Type V, Cytoplasmic Streaming, Dyneins, Kinesins, Systems Integration, Kinetics, Reference Values, Muscle Contraction
Models, Molecular, Myosin Type II, Sarcomeres, Periodicity, Stochastic Processes, Movement, Cytoplasmic Vesicles, Myosin Type V, Cytoplasmic Streaming, Dyneins, Kinesins, Systems Integration, Kinetics, Reference Values, Muscle Contraction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
