Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical & Biological...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical & Biological Engineering & Computing
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery–based brain-computer interface system

Authors: Yang Zheng; Guanghua Xu;

Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery–based brain-computer interface system

Abstract

Improper selection of the number and the amplitude of noise channels in noise-assisted multivariate empirical mode decomposition (NA-MEMD) would induce mode mixing and leakage in the obtained intrinsic mode functions (IMF), which would degrade the performance in applications like brain-computer interface (BCI) systems based on motor imagery. A measurement (ML-index) using no prior knowledge of the underlying components of the original signals was proposed to quantify the amount of mode mixing and leakage of IMFs. Both synthetic signals and electroencephalography (EEG) recordings from motor imagery experiments were used to test the validity. The BCI classification performance using NA-MEMD with the optimal parameters selected based on the ML-index was compared with the performance under the non-optimal parameter condition and the performance using the conventional filtering method. Test on synthetic signals demonstrated the ML-index can effectively quantify the amount of mode mixing and leakage, and help to improve the accuracy of extracting the underlying components. Test on EEG recordings showed the BCI classification performance can be significantly improved under the optimal parameter condition. This study provided a method to quantify the amount of mode mixing and leakage in IMFs and realized the optimization of the parameters associated with noise channels in NA-MEMD. Graphical abstract One of the synthetic multivariate signals comprised four components oscillating at different rates (middle column). Noise-assisted multivariate empirical mode decomposition (noise-assisted MEMD) was used to extract different components. Mode mixing issue occurred under the non-optimal parameter condition (left column). The issue was alleviated under the optimal parameter condition (right column) which can be obtained with the proposed method in this study.

Related Organizations
Keywords

Adult, Male, Imagery, Psychotherapy, Electroencephalography, Signal Processing, Computer-Assisted, Motor Activity, Young Adult, Brain-Computer Interfaces, Multivariate Analysis, Humans, Female, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!