<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This study presents a general outline of the Qitai radio telescope (QTT) project. Qitai, the site of the telescope, is a county of Xinjiang Uygur Autonomous Region of China, located in the east Tianshan Mountains at an elevation of about 1800 m. The QTT is a fully steerable, Gregorian type telescope with a standard parabolic main reflector of 110 m diameter. The QTT has adopted an um-brella support, homology-symmetric lightweight design. The main reflector is active so that the deformation caused by gravity can be corrected. The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to 115 GHz. To satisfy the requirements for early scientific goals, the QTT will be equipped with ultra-wideband receivers and large field-of-view mul-ti-beam receivers. A multi-function signal-processing system based on RFSoC and GPU processor chips will be developed. These will enable the QTT to operate in pulsar, spectral line, continuum and Very Long Baseline Interferometer (VLBI) observing modes. Electromagnetic compatibility (EMC) and radio frequency interference (RFI) control techniques are adopted throughout the system design. The QTT will form a world-class observational platform for the detection of low-frequency (nanoHertz) gravitational waves through pulsar timing array (PTA) techniques, pulsar surveys, the discovery of binary black-hole systems, and exploring dark matter and the origin of life in the universe.
12 pages, 11 figures, accepted for publication in Science China Physics, Mechanics & Astronomy
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |