Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Computer ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computer Science and Technology
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SymPas: Symbolic Program Slicing

Authors: Yingzhou Zhang;

SymPas: Symbolic Program Slicing

Abstract

Program slicing is a technique for simplifying programs by focusing on selected aspects of their behaviour. Current mainstream static slicing methods operate on the PDG (program dependence graph) or SDG (system dependence graph), but these friendly graph representations may be expensive and error-prone for some users. We attempt in this paper to study a light-weight approach of static program slicing, called Symbolic Program Slicing (SymPas), which works as a dataflow analysis on LLVM (Low-Level Virtual Machine). In our SymPas approach, slices are stored symbolically rather than procedure being re-analysed (cf. procedure summaries). Instead of re-analysing a procedure multiple times to find its slices for each callling context, SymPas calculates a single symbolic (or parameterized) slice which can be instantiated at call sites avoiding re-analysis; it is implemented in LLVM to perform slicing on its intermediate representation (IR). For comparison, we systematically adapt IFDS (Interprocedural Finite Distributive Subset) analysis and the SDG-based slicing method (SDG-IFDS) to statically IR slice programs. Evaluated on open-source and benchmark programs, our backward SymPas shows a factor-of-6 reduction in time cost and a factor-of-4 reduction in space cost, compared to backward SDG-IFDS, thus being more efficient. In addition, the result shows that after studying slices from 66 programs, ranging up to 336,800 IR instructions in size, SymPas is highly size-scalable.

29 pages, 11 figures

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Software Engineering, Computer Science - Programming Languages, Programming Languages (cs.PL), Logic in Computer Science (cs.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
bronze