Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AGEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AGE
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AGE
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Xanthine dehydrogenase/xanthine oxidase and oxidative stress

Authors: H Y, Chung; B S, Baek; S H, Song; M S, Kim; J I, Huh; K H, Shim; K W, Kim; +1 Authors

Xanthine dehydrogenase/xanthine oxidase and oxidative stress

Abstract

Xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) are single-gene products that exist in separate but interconvertible forms. XOD utilizes hypoxanthine or xanthine as a substrate and O2 as a cofactor to produce superoxide (·O2 (-)) and uric acid. XDH acts on these same substrates but utilizes NAD as a cofactor to produce NADH instead of ·O2 (-) and uric acid. XOD has been proposed as a source of oxygen radicals in polymorphonuclear, endothelial, epithelial, and connective tissue cells. However, several questions remain about the physiological significance and functions of XOD on aging and oxidative stress. XOD is reported to play an important role in cellular oxidative status, detoxification of aldehydes, oxidative injury in ischemia-reperfusion, and neutrophil mediation. For example, XOD may serve as a messenger or mediator in the activation of neutrophil, T cell, cytokines, or transcription in defense mechanisms rather than as a free radical generator of tissue damage. Emerging evidence on the synergistic interactions of ·O2 (-), a toxic product of XOD and nitric oxide, may be another illustration of XOD involvement in tissue injury and cytotoxicity in an emergent condition such as ischemia or inflammation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 1%
Top 10%
Average
bronze