Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The characteristics of H6 against Microcystis aeruginosa

Authors: Qunwei Dai; Jing Shan; Xinshuang Deng; Huixian Yang; Chuntan Chen; Yulian Zhao;

The characteristics of H6 against Microcystis aeruginosa

Abstract

Algal bloom caused by Microcystis aeruginosa has always been the focus of attention; microbial algal control has the advantages of significant effect, low investment cost, and environmental friendliness; the use of microbial technology to inhibit the bloom has a broad prospect for development. In this study, a strain of Enterobacterium algicidal bacteria screened from a river was used to study the algicidal characteristics against Microcystis aeruginosa using SEM, 3-D EEM and zeta potential. The results showed that the optimal dosage (v/v) of the strain was 5% and the removal rate of algal cells was 70% after 7 days. When the algal density was OD680nm = 0.3, the removal rate of algal cells reached 83% after 7 days. In the pH range of 5 ~ 11, the removal rate of algal cells was 70 ~ 80% after 7 days. Algicidal bacteria H6 is mainly indirect algae lysis and is supplemented by direct algae lysis. Algicidal bacteria H6 removes algicidal substances by secreting high temperature resistant algicidal substances and algicidal products are humic acids. Algicidal bacterium H6 was a strain of Enterobacterium with good algicidal effect in a wide pH range, which enriched the bacterial resources in the control of cyanobacteria bloom in water. The high temperature resistance of the algae-soluble substance secreted by the algae-soluble substance provided convenience for the subsequent preparation and application of bacterial powder.

Related Organizations
Keywords

Microcystis, Cell Death, Harmful Algal Bloom, Water, Eutrophication

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?