
Information about the position of entities is very valuable in many fields. People, animals, robots and sensors are some examples of entities that have been targeted as nodes of interest for localization purposes. Technical advances in ubiquitous computing and wireless communications properties are very valuable means to obtain localization information. This paper presents a novel range-free localization algorithm based on connectivity and motion (LACM). The core of the algorithm is an error function that measures the error of the obtained trajectories with respect to the localization solution space, a multi-dimensional space that encompasses all solutions that satisfy completely the constraints of a range-free localization problem. LACM is a centralized method that can be used standalone or as a refinement phase for other localization methods. Limited-memory Broyden---Fletcher---Goldfarb---Shanno, an unconstrained optimization algorithm, is the numerical method used to minimize the error function. The performance of LACM is validated both through extensive simulations with excellent results in scenarios with irregular communications and by transforming real Bluetooth connectivity traces into localization information.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
